```
Printed Pages - 16
```


320314 (20)

BE (3 ${ }^{\text {rd }}$ Semester)
Examination, April-May 2021
Branch : Civil
MECHANICS OF SOLIDS
Time Allowed : Three Hours
Maximum Marks : 80
Minimum Pass Marks : 28

Note : Part 'a' of each question is compulsory. Attempt
two parts from (b), (c) and (d) of each question.

UNIT-İ

Q. 1. (a) Define and explain the following terms: 2
(i) Hooke's law

320314 (20)
P.T.O.
(ii) Circumferential and longitudinal stress
(iii) Modulus of rigidity
(iv) Bulk modulus
(b) A steel rod of 3 cm diameter is enclosed
centrally in a hollow copper tube of external
diameter of 4 cm . The composite bar is
subjected to an axial pull of 45 kN , if the
length of each bar is equal to 15 cm ,
determine
(i) The stresses in the rod and the tube
(ii) Load carried by each bar

Take E for steel $=2.1 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$ and
for copper $=1.1 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$.
(c) Derive the relationship between modulus of
elasticity \& modulus of rigidity in terms of

Poisson's Ratio. 7
(d) A steel tube 2.5 cm external diameter and 1.9
cm internal diameter encloses a copper rod
1.6 cm diameter to which it is rigidly
connected at two ends. If at a temperature of
$10^{\circ} \mathrm{C}$, there is no longitudinal stress,
calculate, the stresses in each rod and the
tube when the temperature is raised to
$200^{\circ} \mathrm{C}$.

Take:

$$
\begin{aligned}
& E_{s}=2.1 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2} \\
& E_{c}=1.0 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2} \\
& \alpha_{\mathrm{s}}=11 \times 10^{-6} /{ }^{\circ} \mathrm{C} \\
& \alpha_{c}=18 \times 10^{-6} /{ }^{\circ} \mathrm{C}
\end{aligned}
$$

UNIT-II

Q. 2. (a) Define and explain :
(i) Body forces
(ii) Surface forces
(iii) Internal forces
(iv) Plane stresses
(b) An element has a tensile stress of 600
$\mathrm{N} / \mathrm{mm}^{2}$ and a compressive stress of 400
$\mathrm{N} / \mathrm{mm}^{2}$ acting on two mutually perpendicular
planes and two equal shear stresses of 100
$\mathrm{N} / \mathrm{mm}^{2}$ on these planes. Find the principal
stresses and maximum shear stress. 7
(c) A flat plate was stretched by tensile forces
acting in the direction X and Y at right angles.

Strain gauges show that strain in X -direction

320314 (20)
P.T.O,
(6)
was 0.00105 and in Y-direction was 0.00020 .

Find,
(i) Stresses acting on X and Y directions
(ii) Direct and shearing strains at a plane

$$
\text { at } 40^{\circ} \text { to } X \text {-deflection and }
$$

(iii) Normal and shearing stresses on that

```
plane. Take E = 80 kN/mm 2 and
```

$\mu=0.3$.
(d) An element in plane stress in subjected to stresses $180 \mathrm{~N} / \mathrm{mm}^{2}$ and $80 \mathrm{~N} / \mathrm{mm}^{2}$ in mutually perpendicular directions and shear
stress of $40 \mathrm{~N} / \mathrm{mm}^{2}$. Using Mohr's circle,
determine :
(i) Stresses acting on an element rotated
through an angle $\theta=41^{\circ}$
(ii) Maximum shear stresses

UNIT-III

Q. 3. (a) Explain the relationships between shear
force, bending moment and loading on the
beams.
(b) A simply supported beam of length 8 m rests
on supports 6 m apart. The beam carries a
uniformly distributed load of $2000 \mathrm{~N} / \mathrm{m}$ over
the entire length. Draw shear force and
bending moment diagrams and find the
positions of points of contra-flexure if any. 7
(c) A timber beam of rectangular section of length 8 m is simply supported. The beam
carries a U.D.L. of $12 \mathrm{kN} / \mathrm{m}$ run over the entire length and a point load of 10 kN at 3 m from the left support. If the depth is twice the
width and the stress in timber is not to. exceed $8 \mathrm{~N} / \mathrm{mm}^{2}$; find the suitable
dimensions of the section.
(d) Figure (1) shows, R.S.J. $30 \mathrm{~cm} \times 15 \mathrm{~cm}$. At
a certain section it has to resist a bending
moment of $130 \mathrm{kN}-\mathrm{m}$ and a shear force of

280 kN . Find the principal stresses at : 7
(i) At top II
(ii) In the flange at 13 cm from Neutral

Axis
(iii) In the web at 13 cm from neutral axis
(iv) At the neutral axis

And show the variation of principal stresses
along the section.
(10)

Q. 4.
(a) State and explain Euler's theory \& assumptions for long columns.
(b) A built-up beam shown in figure (2) is simply
supported at its ends. Compute its length for
a load of 40 kN per meter length, it deflects
by 1 cm , use $\left(\delta=\frac{5 \mathrm{wt}}{384 \mathrm{EI}}\right)$.
320314 (20)

Find out the safe load if this beam is used as
a column with both ends fixed. Assume
factor of safety of 4. Use Euler's formula

$$
\mathrm{E}=210 \mathrm{GN} / \mathrm{m}^{2}
$$

Figure (2)
(c) Figure (3) shows, a compound stanchion made up of two channels ISJC 200 weighing 139 N per meter per channel and two 25×1 cm^{2} plates, riveted one to each flange, if the maximum permissible stress is $70 \mathrm{MN} / \mathrm{m}^{2}$, find the maximum eccentricity of a 250 kN load from yy axis of the column. The load line lies in the vertical plane, through the xx axis.

Take $E=200 \mathrm{GN} / \mathrm{m}^{2}$, the effective length of the column being 3 meters.

Properties of the section :

Area $=17.77 \mathrm{~cm}^{2}$
$I_{x x}=1161.2 \mathrm{~cm}^{4}$
320314 (20)
(13)

$$
\mathrm{I}_{\mathrm{yy}}=84.2 \mathrm{~cm}^{4}
$$

Distance of centroid from back of web $=$
1.97 cm .

(d) A masonry retaining wall is 0.8 m wide at the
top and 3.8 m at bottom and retains water
level at its top. The wall is 4.8 m high, test the
stability of wall against :
(i) Tension
(ii) Crushing
(iii) Sliding
(iv) Overturning

Take Weight of masonry $=24 \mathrm{kN} / \mathrm{m}^{3}$

Bearing capacity of soil $=240 \mathrm{kN} / \mathrm{m}^{2}$

Co-efficient of friction, $\mu=0.6$

Factor of safety against overturning $=2.5$

UNIT-V

Q. 5. (a) State and explain the reasons of unsymmetrical bending. 2
(b) A cantilever, of I section 2.5 m long is subjected to a load of 210 N at free end as
shown in figure (4). Determine the resulting
bending stresses at corners A \& B on the
fixed section of the contilever.
7.

(c) Determine the position of the shear center of
the section of a beam shown in figure (5). 7

(d) A solid steel shaft is subjected to a torque of
$50 \mathrm{kN}-\mathrm{m}$. If the angle of twist is 0.5° per
meter length of the shaft and the shear
stress is not to be allowed to exceed
$90 \mathrm{MN} / \mathrm{m}^{2}$, find :
7
(i) Suitable diameter for the shaft
(ii) Maximum shear stress and angle of
twist
(iii) Maximum shear strain in the shaft

$$
\text { Take } \mathrm{C}=80 \mathrm{GN} / \mathrm{m}^{2}
$$

